TEMA 5: INTEGRACIÓN

1. La integral indefinida

En muchos aspectos, la operación llamada integración que vamos a estudiar aquí es la operación inversa a la derivación.

Definición 1.1. La función F es una antiderivada (o primitiva) de la función f en el intervalo I si F'(x) = f(x) para todo $x \in I$.

Por lo que ambas $F_1(x) = x^3 + 6$ y $F_2(x) = x^3 - 2$ son antiderivadas de $f(x) = 3x^2$ en cualquier intervalo.

Teorema 1.2. Si F_1 y F_2 son dos antiderivadas arbitrarias de f en I, entonces $F_1(x) - F_2(x) = const.$ en I.

Demostración. Por definición de antiderivada $F_1' = F_2' = f$ en I, por lo que $(F_1 - F_2)'(x) = 0$ para todo $x \in I$. Puesto que una función con derivada nula en un intervalo es una función constante, tenemos que $F_1(x) - F_2(x) = \text{const.}$

Corolario 1.3. Si F es una de las antiderivadas de f en I, y G es otra antiderivada de la función f en I entonces G tiene la forma G(x) = F(x) + C, donde C es una constante.

Definición 1.4. El conjunto de todas las antiderivadas de la función f en el intervalo I es llamado la integral indefinida de f en I, y es denotado por

$$\int f(x) \, dx.$$

Observemos que por el Corolario 1.3, $\int f(x) dx = F(x) + C$, donde F es una de las antiderivadas de f en I, y C es una constante arbitraria. A menudo el símbolo $\int f(x) dx$ denota no el conjunto de todas las antiderivadas sino cualquiera de ellas.

1.1. Propiedades de la Integral Indefinida.

- 1. $\int F'(x) dx = F(x) + C$;
- 2. Sean f, g funciones cualesquiera y a, b constantes, $\int (af(x) + bg(x)) dx = a \int f(x) dx + b \int g(x) dx$.

1.2. Reglas básicas de Integración.

1.
$$\int 0 \, dx = C;$$
2.
$$\int 1 \, dx = x + C;$$
3.
$$\int x^a \, dx = \frac{x^{a+1}}{a+1} + C \qquad (a \neq -1);$$
4.
$$\int \frac{dx}{x} = \ln|x| + C \qquad (x \neq 0);$$
5.
$$\int a^x \, dx = \frac{a^x}{\ln a} + C \qquad (0 < a \neq 1), \int e^x \, dx = e^x + C;$$

6.
$$\int \sin x \, dx = -\cos x + C;$$
7.
$$\int \cos x \, dx = \sin x + C;$$
8.
$$\int \frac{1}{\cos^2 x} \, dx = \tan x + C \qquad (x \neq \frac{\pi}{2} + k\pi, k \text{ entero});$$
9.
$$\int \frac{dx}{\sqrt{1 - x^2}} = \arcsin x + C \qquad (-1 < x < 1);$$
10.
$$\int \frac{dx}{1 + x^2} = \arctan x + C.$$

1.3. Integración con Cambio de Variable. A veces la tarea de encontrar la integral $\int f(x) dx$ se simplifica a través de un cambio de variable $x = \varphi(t)$. La fórmula de cambio de variable en una integral indefinida es

$$\int f(x) dx \bigg|_{x=\varphi(t)} = \int f(\varphi(t))\varphi'(t) dt.$$

Ejemplo 1.5. Hallar $\int \tan x \, dx$.

Solución: Sea $t=\cos x$. Entonces $dt=-\sin x\,dx$. Así, por la fórmula de cambio de variable

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\int \frac{dt}{t} = -\ln|t| + C = -\ln|\cos x| + C.$$

Ejemplo 1.6. Hallar $\int \sqrt{2x-1} \, dx$.

Solución: Sea t = 2x - 1. Entonces dt = 2dx. Por lo que,

$$\int \sqrt{2x-1} \, dx = \frac{1}{2} \int \sqrt{t} \, dt = \frac{1}{2} \int t^{1/2} \, dt = \frac{1}{2} \frac{t^{3/2}}{3/2} + C = \frac{1}{3} t^{3/2} + C = \frac{1}{3} (2x-1)^{3/2} + C.$$

Ejemplo 1.7. Hallar $\int x\sqrt{2x-1}\,dx$.

Solución: Sea t=2x-1. Entonces dt=2dx. Además, x=(1+t)/2. Aplicando la fórmula de cambio de variable, tenemos

$$\int x\sqrt{2x-1} \, dx = \frac{1}{4} \int (1+t)t^{1/2} \, dt = \frac{1}{4} \int t^{1/2} + t^{3/2} \, dt = \frac{1}{4} \left(\frac{t^{3/2}}{3/2} + \frac{t^{5/2}}{5/2} \right) + C$$
$$= \frac{3}{2} (2x-1)^{3/2} + \frac{5}{2} (2x-1)^{3/2} + C.$$

Ejemplo 1.8. Hallar $\int \frac{\ln x}{x} dx$.

Solución: Sea $t = \ln x$. Entonces dt = dx/x y

$$\int \frac{\ln x}{x} \, dx = \int t \, dt = \frac{1}{2} t^2 + C = \frac{1}{2} (\ln x)^2 + C.$$

Ejemplo 1.9. Hallar $\int xe^{-x^2} dx$.

SOLUCIÓN: Sea $t = x^2$. Entonces dt = 2xdx y

$$\int xe^{-x^2} dx = \frac{1}{2} \int e^{-t} dt = -\frac{1}{2}e^{-t} + C = -\frac{1}{2}e^{-x^2} + C.$$

1.4. Integración por partes. Para funciones derivables u y v tenemos que (uv)' = uv' + vu'. Tomando integrales y dado que $\int (uv)'(x) dx = u(x)v(x)$, tenemos

$$\int u(x)v'(x) dx = u(x)v(x) - \int v(x)u'(x) dx.$$

Esta relación es conocida como la fórmula de integración por partes. Usando las identificaciones u'(x) dx = du y v'(x) dx = dv podemos escribir esta fórmula como

$$\int u \, dv = uv - \int v \, du.$$

Ejemplo 1.10. Hallar $\int xe^x dx$.

Solución: Sea u = x y $dv = e^x dx$. Entonces du = dx y $v = e^x$. Por lo que

$$\int xe^x \, dx = xe^x - \int e^x \, dx = e^x(x-1) + C.$$

Ejemplo 1.11. Hallar $\int x^2 \ln x \, dx$.

SOLUCIÓN: Sea $u = \ln x$ y $dv = x^2 dx$. Observemos que du = dx/x y $v = x^3/3$. Entonces, usando la fórmula de integración por partes, tenemos

$$\int x^2 \ln x \, dx = \ln x \left(\frac{x^3}{3}\right) - \int \frac{x^3}{3x} \, dx = \ln x \left(\frac{x^3}{3}\right) - \frac{1}{3} \int x^2 \, dx = \ln x \left(\frac{x^3}{3}\right) - \frac{1}{9} x^3 + C.$$

Ejemplo 1.12. Hallar $\int \arctan x \, dx$.

SOLUCIÓN: Sea $u = \arctan x$ y dv = dx. Entonces $du = dx/(1+x^2)$ y v = x. Por lo que

$$\int \arctan x \, dx = x \arctan x - \int \frac{x}{1+x^2} \, dx.$$

Ahora, observemos que usando el cambio de variable $t=x^2$ tenemos $dt=2x\,dx$, de este modo

$$\int \frac{x}{1+x^2} dx = \frac{1}{2} \int \frac{1}{1+t} dt = \frac{1}{2} \ln|1+t| + C = \frac{1}{2} \ln(1+x^2) + C.$$

Conectando este valor a la expresión anterior, obtenemos finalmente que

$$\int \arctan x \, dx = x \arctan x - \frac{1}{2} \ln (1 + x^2) + C.$$

Ejemplo 1.13. Hallar $\int x^2 \sin x \, dx$.

Solución: Sea $u=x^2$ y $dv=\sin x\,dx$. Entonces $du=2x\,dx$ y $v=-\cos x$. Así

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2 \int x \cos x \, dx.$$

Aplicando de nuevo la integración por partes a la segunda integral, u = x y $dv = \cos x dx$ tenemos que du = dx y $v = \sin x$, por lo que

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x + C.$$

Conectando este valor a la expresión anterior, obtenemos finalmente que

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + 2 \cos x + C.$$

1.5. Integración de Funciones Racionales. Una función racional es de la forma $\frac{P_n(x)}{Q_m(x)}$, donde P_n y Q_m son plinomios de grado n y m, respectivamente. Si $n \geq m$ la fracción es impropia y puede ser representada por

$$\frac{P_n(x)}{Q_m(x)} = P_{n-m}(x) + \frac{R_k(x)}{Q_m(x)},$$

donde el grado del polinomio R_k es k < m. Por lo que la integración de una fracción impropia puede ser reducida a la integración de una fracción propia

$$\int \frac{P_n(x)}{Q_m(x)} dx = \int P_{n-m}(x) dx + \int \frac{R_k(x)}{Q_m(x)} dx.$$

Ejemplo 1.14.

$$\int \frac{x^3 + x^2 + x}{x^2 + 1} \, dx = \int (x+1) \, dx - \int \frac{1}{x^2 + 1} \, dx,$$

Puesto que la división de los polinomios es

$$\frac{x^3 + x^2 + x}{x^2 + 1} = x + 1 - \frac{1}{x^2 + 1}.$$

Así

$$\int \frac{x^3 + x^2 + x}{x^2 + 1} dx = \frac{1}{2}(x+1)^2 - \arctan x + C.$$

Teorema 1.15. Supongamos que $\frac{P_n(x)}{Q_m(x)}$ es una fracción propia (n < m) y que

$$Q_m(x) = (x-a)(x-b)\cdots(x-d).$$

Entonces existen constantes A, B, \ldots, D tal que

$$\frac{P_n(x)}{Q_m(x)} = \frac{A}{x-a} + \frac{B}{x-b} + \dots + \frac{D}{x-d}.$$

Una consecuencia importante es que para una fracción propia que satisface la condición del teorema, tenemos

$$\int \frac{P_n(x)}{Q_m(x)} dx = \int \frac{A}{x-a} dx + \int \frac{B}{x-b} dx + \dots + \int \frac{D}{x-d} dx$$
$$= A \ln|x-a| + B \ln|x-b| + \dots + D \ln|x-d| + C.$$

Ejemplo 1.16. Hallar $\int \frac{1}{x^2 - 5x + 6} dx$.

Solución: Notemos que $x^2 - 5x + 6 = (x - 3)(x - 2)$. Entonces

$$\frac{1}{(x-3)(x-2)} = \frac{A}{x-3} + \frac{B}{x-2} = \frac{A(x-2) + B(x-3)}{(x-3)(x-2)}.$$

donde 1 = A(x-2) + B(x-3) es llamada ecuación básica. Para hallar los valores de A y B hacemos x=2 en la ecuación básica y obtenemos que 1=-B, por tanto, B=-1 y haciendo x=3 obtenemos A=1. De aquí que

$$\int \frac{1}{x^2 - 5x + 6} \, dx = \ln|x - 3| - \ln|x - 2| + C.$$

2. La Integral Definida

Definición 2.1. La integral definida de una función continua no-negativa f en el intervalo I = [a, b] es el área, A, de la región limitada por la gráfica de f, el eje x, y las rectas verticales x = a y x = b. La integral definida viene dada por

$$\int_{a}^{b} f(x) \, dx = A.$$

Ejemplo 2.2. Si f(x) = 1 - x, entonces $\int_0^1 f(x) dx = 1/2$, puesto que la región bajo la gráfica de f, limitada por x = 0, x = 1 es el triángulo rectángulo con área 1/2.

Definición 2.3. La integral definida de una función continua no-positiva f en el intervalo I = [a, b] es el área de la región limitada por la gráfica de -f, el eje x, y las rectas verticales x = a, x = b. Por lo que,

$$\int_{a}^{b} f(x) \, dx = -A.$$

Es sencillo definir la integral definida de una función que cambia de signo en el intervalo [a,b]. A modo de ejemplo, supongamos que f es continua en [a,b] y satisface $f \geq 0$ en [a,c], $f \leq 0$ en [c,b]. Entonces la integral definida de f en [a,b] es la diferencia de las áreas

$$\int_{a}^{b} f(x) dx = A_{[a,c]} - A_{[c,b]} = \int_{a}^{c} f(x) dx - \int_{c}^{b} (-f)(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$
(ver Propiedad (4) abajo).

Situaciones más complejas pueden ser tratadas de manera similar.

Ejemplo 2.4 (Ejemplo 2.2, continuación). Si f(x) = 1 - x, entonces $\int_0^2 f(x) dx = 0$, ya que sabemos que $\int_0^1 f(x) dx = 1/2$ y $\int_1^2 (-f)(x) dx = -1/2$. Este último es debido a que

la región limitada por -f entre x=1 y x=2 es de nuevo un triángulo rectángulo de área 1/2.

2.1. Propiedades de la integral definida. En lo que sigue f y g son funciones continuas en [a,b] y $\alpha,\beta\in\mathbb{R}$.

1.
$$\int_{a}^{a} f(x) dx = 0;$$
2.
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx;$$
3.
$$\int_{a}^{b} \alpha f(x) + \beta g(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$
4. Para cualquier $c \in [a, b]$,
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$
5. Si $f(x) \ge g(x)$ en $[a, b]$, entonces
$$\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx.$$

3. Regla de Barrow

En esta sección mostramos la conexión entre áreas y antiderivadas.

Definición 3.1. Sea la función f continua en el intervalo [a, b]. La función

$$F(x) = \int_{a}^{x} f(t) dt \qquad (a \le x \le b)$$

se dice que es una integral con límite superior variable.

Teorema 3.2 (Teorema Fundamental del Cálculo Integral). Si la función f es continua en el intervalo [a,b], entonces la función $F(x) = \int_a^x f(t) dt$ es una antiderivada de f en [a,b].

Dicho de otra manera, el teorema establece que

$$\left(\int_{a}^{x} f(t) dt\right)' = f(x).$$

Teorema 3.3 (Regla de Barrow). Si la función f es continua en el intervalo [a, b], entonces

$$\int_a^b f(x) \, dx = G(b) - G(a),$$

 $donde\ G\ es\ una\ antiderivada\ de\ f\ en\ [a,b].$

Demostración. Sea G una antiderivada arbitraria de f en [a,b]. Entonces, por el Teorema 1.2, G-F es constante en [a,b], dado que $F(x)=\int_a^b f(x)\,dx$, es también una antiderivada de f. En consecuencia, G(a)-F(a)=G(b)-F(b), o

$$G(b) - G(a) = F(b) - F(a) = \int_a^b f(x) dx - \int_a^a f(x) dx = \int_a^b f(x) dx.$$

La mayoría de las veces vamos a escribir G(b) - G(a) como $G(x)|_a^b$.

3.1. El área de una región plana. Dada una función continua f, el área de la región limitada por la curva y = f(x), el eje OX y las rectas verticales x = a y x = b es

$$A = \int_{a}^{b} |f(x)| \, dx.$$

Ejemplo 3.4 (Ejemplo 2.4, continuación). El área de la región limitada por y = 1 - x en el intervalo [0, 2] es

$$A = \int_0^2 |1 - x| \, dx = \int_0^1 (1 - x) \, dx + \int_1^2 -(1 - x) \, dx = \frac{1}{2} + \frac{1}{2} = 1.$$

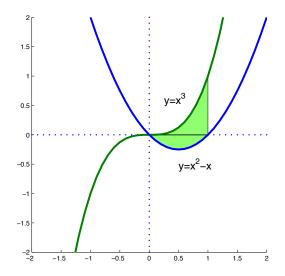
Supongamos que una región plana está limitada por las curvas continuas y = f(x), y = g(x), $a \le x \le b$, donde $g(x) \le f(x)$, y las rectas verticales x = a y x = b (las rectas pueden degenerar en un punto). Entonces el área de la región es

$$A = \int_a^b (f(x) - g(x)) dx.$$

Ejemplo 3.5. Hallar el área de la región limitada por las curvas $y = x^3$, $y = x^2 - x$ en el intervalo [0,1].

SOLUCIÓN: Las curvas se cortan en un punto. Resolviendo la ecuación $x^3 = x^2 - x$, encontramos la abscisa del punto, x = 0. Por lo tanto una de las curvas se mantiene por encima de la otra en todo el intervalo. Para saber cuál de las curvas está por encima, simplemente sustituímos en $x^3 - x^2 + x$ un valor arbitrario del intervalo; para x = 1/2 tenemos que $x^3 - x^2 + x|_{x=1/2} = 0.375 > 0$, así x^3 está por encima de $x^2 - x$ en [0,1]. El área es

$$A = \int_0^1 x^3 - (x^2 - x) \, dx = \frac{x^4}{4} - \frac{x^3}{3} + \frac{x^2}{2} \Big|_0^1 = \left(\frac{1}{4} - \frac{1}{3} + \frac{1}{2}\right) - 0 = \frac{5}{12}.$$



Ejemplo 3.6. Hallar el área de la región limitada por las gráficas de las funciones $f(x) = 2 - x^2$, g(x) = x.

Solución: Las gráficas de las funciones se cortan en dos puntos. Resolviendo la ecuación $2-x^2=x$ encontramos que los puntos de corte son $x=-2,\,x=1$. Por tanto, una de las curvas se mantiene por encima de la otra en el intervalo [-2,1]. De nuevo, para saber cuál de las gráficas está por encima, simplemente sustituímos en $2-x^2=x$ un valor arbitrario del intervalo [-2,1]; para x=0 tenemos que $2-x^2-x|_{x=0}=2>0$, de modo que $2-x^2$ está por encima de x en [-2,1]. El área es

$$A = \int_{-2}^{1} 2 - x^2 - x \, dx = 2x - \frac{x^3}{3} - \frac{x^2}{2} \Big|_{-2}^{1} = \left(2 - \frac{1}{3} - \frac{1}{2}\right) - \left(-4 + \frac{8}{3} - 2\right) = \frac{9}{2}.$$

